AN EXTENDED PARTIAL GEOMETRY

By Damaraju Raghavarao

Punjab Agricultural University, Hissar

- 1. Summary and Introduction. Bose (1) has defined the partial geometries and showed that many of the well known 2 associate class association schemes are particular cases of the association scheme defined by the geometry. In this paper we extend the concept of partial geometry and obtain a new 3-associate class association scheme. Cubic association scheme defined by Raghavarao and Chandrasekhararao (4) will be a particular case of the association scheme we obtain by means of our extended partial geometry.
- 2. Definition of a generalized partial geometry. Consider a system of v undefined points and b undefined lines satisfying the axioms.
 - A₁ Any two points are incident with not more than one line.
 - A_2 Each point is incident with r lines.
 - A_3 Each line is incident with k points.
- A_4 Given a point P, the lines not passing through P can be divided into 2 disjoint sets S_1 and S_2 with cardinals μ_1 and μ_2 such that every line of the set S_1 , can be intersected by exactly one line passing through P and no line of set S_2 can be intersected by a line passing through P.
- Let P be any point and let us number the r lines passing through P as $1, 2, \ldots, r$. Number the points lying on each of these lines (excluding the point P) in an arbitrary way from $1, 2, \ldots, k-1$. Now the points on these r lines (excluding the point P) can be denoted by (i, j), where i stands for the number of the line through P and hence runs from i to r and j is the number of the point on the ith line from P and hence runs from 1 to k-1. Through each point (i, j) there pass r-1 lines other than the ith line through P and we call these r-1 lines as the pencil $\{i, j\}$. The lines of the pencil $\{i, j\}$

can be arbitrarily numbered from $1, 2, \ldots, r$ -1 and the tth line of the pencil $\{i, j\}$ can be denoted as $\{i, j; t\}$. No line of the pencil $\{i, j\}$ meets a line of pencil $\{i, j'\}$ where $j \neq j'$. In fact, if $\{i, j; t\}$ and $\{i, j'; t'\}$ where $j \neq j'$ intersect in Q, then two lines passing through Q intersect the ith line through P and A_4 is violated. Lines of the pencils $\{i, j\}$ and $\{i', j'\}$ where $i \neq i'$ may intersect and here we stipulate.

 A_5 Exactly one line of pencil $\{i, j\}$ intersects exactly one line of pencil $\{i', j'\}$ where $i \neq i'$ and further if $\{i, j; t\}$ intersects a line of $\{i', j'\}$ where $i \neq i'$, then it intersects one line from each of the pencils $\{i', j''\}$ where $i' \neq i$ and $j'' = 1, 2, \ldots, k-1$.

It is to be remarked here that A_5 is stated in terms of the pencil $\{i, j\}$ for clarity of expression only. This is not to be misunderstood that only one point P and the pencils thereby defined should satisfy A_5 . With respect to every point of the system under consideration, pencils similar to $\{i, j\}$ should be defined and the lines of these pencils should satisfy A_5 .

Definition 2.1. A system of undefined points, b undefined lines and an incidence relation satisfying axioms A_1 to A5 will be called an extended partial geometry with parameters r, k, 0 and 1; and is symbolically denoted by [r, k; 0, 1].

As an illustration consider a system containing 14 points and 28 lines with an incidence relation as given by figure 1. We can easily verify that this system satisfies axioms A_1 to A_5 and hence is an extended partial geometry with parameters 4, 2, 0 and 1.

3. Some lemmas on the structure of [r, k: 0, I]. In this section we prove some lemmas which will be useful for us to prove our main theorems in the next section.

Lemma 3.1. [r, k; 0, 1] the lines do not form a triangle.

For, otherwise axiom A₄ will be violated.

Lemma 3.2. In [r, k; 0, 1] if P is any point and $\{i, j\}$ are pencils of r-1 lines as defined in section 2, through any point Q not incident with any line through P, there pass either two or no lines of the pencils $\{i, j\}$.

This is a consequence of axiom A_5 .

Lemma 3.3. In [r, k; 0, 1] the lines do not form a pentagon. Proof. We shall prove this result by induction on r and for every k. When r=1, there is nothing to prove.

When r=2, let, if possible, the pentagon ABCDE be formed.

Through the point B there pass two lines BA and BC and hence from axiom A_5 , one line from A other than AB must meet one line from C other than BC. Since there pass only two lines through every

point, the lines AE and CD must meet in a point, say, F. Then there forms the triangle DFE in the geometry, a contradiction to Lemma 3.1. Hence there does not exist a pentagon in the geometry [2, k; 0, 1].

Let us now assume that if there pass r lines through every point of the geometry, there does not exist a pentagon and show that if a pentagon exists when there pass r+1 lines through a point, there was already a pentagon when r lines only pass through a point, a contradiction to the induction hypothesis; or one of the axioms will be violated.

Let P be any point of the geometry; (i, j) and $\{i, j\}$ for $i=1, 2, \ldots, r$ and $j=1, 2, \ldots, k-1$ be the points and pencils of

lines as defined in section

2. Let another line numbered (r+1)th pass through

P and number the points on this line arbitrarily as $(r+1, j), j=1, 2, \ldots, k-1$. To each pencil of lines $\{i, j\}$ for $i=1, 2, \ldots, r$; $j=1, 2, \ldots, k-1$ a new line will be added which will be denoted by $\{i, j; r\}$. The lines of the pencil $\{r+1, j\}$ be denoted

by $\{r+1, j; t\}$ for $t=1, 2, \ldots, r$. If a pentagon exists when there pass r+1 lines through every point of the geometry, we can without loss of generality assume that it be formed by the (r+1)th and ith lines through P, $\{r+1, j; t\}$, $\{i, j'; t'\}$ and AB, where AB is the line joining A and B which are incident respectively on $\{r+1, j; t\}$ and $\{i, j', t'\}$. We distinguish two cases and discuss them separately.

Case (i), $t' \neq r$. Clearly A must lie on some line of the form $\{\alpha, \beta; r\}$ $\alpha = 1, 2, \ldots, r$; $\beta = 1, 2, \ldots, k-1$ as shown in fig. 3.

If $\alpha=i$, $\beta=j'$, then a triangle forms with the lines $\{i,j';t'\}$, $\{i,j';r\}$ and AB and if $\alpha=i$, $\beta\neq j'$, AB is a line of some pencil $\{i'',j''\}$ for $i''=1,2,\ldots,r+1$; $j''=1,2,\ldots,k-1$. In fact, through the point (i,j') there 'pass two lines: (i) $\{i,j';t'\}$ and the *i*th line

through P; and the line BA intersects $\{i, \beta; r\}$ at the point A. Hence from axiom A_5 , BA should intersect one line from each of the pencils $\{i, j\}$ for j=1, 2...k-1 and one line through the point P other than the *i*th line through the point P. In either case, Lemmas 3.1 or 3.2 are violated. Thus we should have $\alpha \neq i$.

Now a line B must intersect some line $\{\alpha, \beta; t''\}$ $t'' \neq r$, in a point, say, C.B is an old point and AB is a new line, which implies that BC is an old line. Hence there was already a pentagon existing when there pass only r lines through every point of the geometry.

Case (ii) t'=r. Let $\{i, j'; r\}$ and $\{r+1, j; t''\}$ intersect in a point, say, D, as shown in figure 4. Through B, there pass two lines AB and $\{i, j'; r\}$ and the line $\{r+1, j; t\}$ intersects the line $\{r+1, j; t''\}$ at the point (r+1, j). Hence by the axiom A_5 , the line (r+1, j)

j;t should intersect a line passing through (i,j') other than (i,j';r). Thus two lines of the pencil $\{i,j'\}$ intersect two lines of the pencil (r+1,j) a contradiction to the axiom A_5 .

Taking these two cases into consideration, we conclude that there does not exist a pentagon when there pass r+1 lines through every point of the geometry. Thus our lemma is proved.

Lemma 3.4. Let P be any point of [r, k; 0, 1] and $\{i, j\}$, i=1, $2, \ldots, r; j=1, 2, \ldots, k-1$ be the pencils of lines as defined in section 2. If Q and R are any two points lying on some lines of some pencils $\{i, j\}$, $i=1, 2, \ldots, r; j=1, 2, \ldots, k-1$; then either Q and R are not incident on a line or they lie on some line belonging to some pencil $\{i, j\}$, $i=1, 2, \ldots, r; j=1, 2, \ldots, k-1$.

Proof. We distinguish 4 cases.

Case (i). Q and R are incident on some line $\{i, j; t\}$ in which case the assertion is trivially true.

Case (ii). Q and R lie respectively on the lines $\{i, j; t\}$ and $\{i, j; t'\}$ where $t \neq t'$. If Q and R are joined by a line, then a triangle forms with vertices (i, j), Q and R, a contradiction to Lemma 3.1. Thus Q and R are not incident on a line.

Case (iii). Q and R lie respectively on the lines $\{i, j; t\}$ and $\{i, j'; t'\}$ where $j \neq j'$. From axiom A_5 it should belong to one of the pencils $\{i' \neq j\}$, $i' = 1, 2, \ldots, r$; $i, i' \neq i, j = 1, 2, \ldots, k-1$; if Q and R are connected.

Case (iv) Q and R lie respectively on the lines $\{i, j; t\}$ and $\{i', j', t'\}$ where $i \neq i'$. If Q and R are joined, then a pentagon forms with vertices P, (i, j), (i', j'), Q and R, a contradiction to Lemma 3.3. Thus Q and R are not incident on a line.

These four cases exhaust all possible ways of choosing Q and R and thus the lemma is proved.

1. Main theorems. In this section we prove the following two theorems.

Theorem 4.1. In a [r, k; 0, 1] geometry, we can define a three associate class association scheme for the points by defining the associate classes as follows: With respect to any point, P, the first associates are those points which are incident on some line passing through P; the second associates are those points through which there pass some line intersecting some line through P; third associates are those points which are neither first nor second associates. The parameters of the association scheme are

$$n_{1}=r(k-1), n_{2}=r (r-1) (k-1)^{2}/2,$$

$$n_{3}=(r-1) (r-2) (k-1)^{3}/2,$$

$$P_{1}=\begin{cases} k-2 & (r-1)(k-1) & 0\\ & (r-1)(k-1)(k-2) & (r-1)(r-2)(k-1)^{2}/2\\ & & (r-1)(r-2)(k-1)^{2} & (k-2)/2 \end{cases}$$

$$P_{2}=\begin{cases} 2 & 2(k-2) & (r-2)(k-1)\\ & (k-2)^{2}+(r+1) & (r+1)(r-2)(k-1)(k-2)/2\\ & & (r-2) & (r-1)(r-2)(k-1)(k-2)^{2}/2\\ & & +(r-2)(r-3)(k-1)^{2}/2 \end{cases}$$

$$P_{3}=\begin{cases} 0 & r & r(k-2)\\ & r(r+1)(k-2)/2 & r[(r-1)(k-2)^{2}+(r-3(k-1))]/2\\ & & & (r-1)(r-2)(k-1)^{3}/2\}-1\\ & & & & -r(k-2)-r\{(r-1)(k-2)^{2}\\ & & & +(r-3)(k-1)\}/2 \end{cases}$$

Theorem 4.2. The lines and points of [r, k; 0, 1] form a three associate class Partially Balanced Incomplete Block (PBIB) design

(cf. [2], [3]) if they are respectively identified with blocks and treatments. The association scheme of the design is as given by Theorem 4.1 and the remaining parameters are

$$v=1+n_1+n_2+n_3=1+r(k-1)+r(r-1)(k-1)^2/2$$

+(r-1)(r-2)(k-1)^3/2,
$$b=vr/k, r, k, \lambda_1=1, \lambda_2=0=\lambda_3.$$

Theorem 4.2 is an immediate consequence of theorem 4.1 and hence we prove theorem 4.1 now. Clearly there are $n_1=r(k-1)$ first associates for every point. The second associates of P are those points lying on the lines $\{i, j; t\}$ for $i=1, 2, \ldots, r$; $j=1, 2, \ldots, k-1$; $t=1, 2, \ldots, r-1$. From Lemma 3.2, it follows that each second associate of P is incident on two such lines. Hence the number of second associates of P is $n_2=r(r-1)$ $(k-1)^2/2$. Through each second associate of P there pass r-2 lines other than the lines of the pencils $\{i, j\}$, $i=1, 2, \ldots, r$; $j=1, 2, \ldots, k-1$ and on each of these lines there are k-1 third associates of P. By noting that each of the third associates of P is incident on r such lines, we have $n_3=r$ $(r-1)(r-2)(k-1)^3/2r=(r-1)(r-2)(k-1)^3/2$, to be the number of third associates of P.

The parameters p'_{11} , p'_{12} , p'_{22} can easily be verified to take the values as anunciated in the theorem. We now prove the expression for p_{22}^2 . Let P and Q be the second associates and Q lie on the lines $\{i, j; t\}$ and $\{i', j'; t'\}$. Let $\{i, j; t\}$ intersect one line from each of the pencils $\{i', j_l\}$ $j_l=1, 2, \ldots, k-1$; $jl\neq j'$ in the points Ql. The points that are incident on the lines joining (i, jl) and Ql excluding the points (i', jl) and Ql are the common second associates of P and Q for $jl=1, 2, \ldots, k-1$; $jl\neq j'$. These points are $(k-2)^{\circ}$ in number. Similarly, the line $\{i', j'; t'\}$ intersects one line from each of the pencils $\{i, jl\}, jl=1, 2, \ldots, k-1$; $j_i \neq j$ in the points Rl. The points that are incident on the line joining (i, jl) and Rl excluding the points (i, jl) and R are also common second associates of both P and Q for $jl=1, 2, \ldots$ k-1; $jl \neq j$. But these points are just the same as enumerated earlier. The points lying on the lines $\{i, j; t''\}$, $t''=1, 2, \ldots, r-1$, $t'' \neq t$ are common second associates of both P and Q and also the points lying on the lines $\{i', j'; t''\}$, $t''=1, 2, \ldots, r-1, t'' \neq t'$. These are 2(r-2)(k-1) in number. Through the point Q, there pass r-2 lines other than the lines $\{i, j; t\}$ and $\{i', j'; t'\}$ and we call these r-2 lines, the pencil of lines through Q and denote them by $\{Q\}$. Let R be any point on some line of the pencil $\{Q\}$. Then on

each line passing through R there can be at most one point of the lines of the pencils $\{i'', j''\}$, $i''=1, 2, \ldots, r$; $i''\neq i$; $i''\neq i'$, $j''=1, 2, \ldots, k-1$ and if B is any point lying on some line of $\{i'', j''\}$ which is incident on some line passing through R, then B and a point R' are incident on a line where $R'\neq R$ and R' is also a point on some line of the pencil $\{Q\}$. By noting this and enumerating the common second associates of both P and Q, we get (r-2)(r-3)(k-1)/2 additional points. Thus, we see that p^2_{22} is as given in the theorem. The remaining parameters can also be similarly obtained and the theorem is established.

Considering the particular case k=2, we have corollary 4.1.1. The generalized partial geometry [r, 2; 0, 1] defines a three associate class association scheme with parameters.

$$\begin{split} n_1 &= r, \ n_2 = r(r-1)/2, \ n_3 = (r-1)(r-2)/2 \\ P_1 &= \left\{ \begin{array}{ccc} 0 & r-1 & 0 \\ 0 & (r-1)(r-2)/2 \\ 0 & 0 \end{array} \right\} \\ P_2 &= \left\{ \begin{array}{ccc} 2 & 0 & r-2 \\ (r+1)(r-2)/2 & 0 \\ (r-2)(r-3)/2 \end{array} \right\} \\ P_3 &= \left\{ \begin{array}{ccc} 0 & r & 0 \\ 0 & r(r-3)/2 \\ 0 & 0 \end{array} \right\} \end{split}$$

The association scheme defined in Theorem 4.1 is cubic association scheme when r=3. When r=2, the 3 associate classes will reduce to 2 associate classes only and then it is an L_2 association scheme.

Lemma 4.1. v, the number of points in [r, k; 0, 1] satisfies $v = 0 \pmod{k}$

Proof.

$$v=1+r(k-1)+r \frac{(r-1)(k-1)^2}{2} + \frac{(r-1)(r-2)(k-1)^3}{2}$$

$$=1-r+r \frac{(r-1)}{2} - \frac{(r-1)(r-2)}{2} \pmod{k}$$

$$=0 \pmod{k}.$$

The constructions of partial geometries discussed in this paper opens a new combinaterial problem and the author hopes to communicate these results in a subsequent paper.

REFREENCES

- BRUCK, R.H. (1963). Finite Notes. II. Uniqueness and Imbedding. Pacific Journal of Maths. Vol. 13, 421-457.
- BOSE. R.C. (1963). Partial geometries. Pacific Journal of Maths. Vol. 13, 389-419.
- 3. BOSE, R.C. and NAIR, K.R. (1938-40). Partially balanced incomplete block designs. Sankhya, 4, 337-372.
- BOSE. R.C. and SHIMAMOTO, T (1952). Classification and analysis of partially balanced designs with two associate classes. J. Amer. Stat. Assn., 47, 151-190.
- RAGHAVARAO, D. and CHANDRASEKHARA RAO, K. (1964). Cubic designs. Ann. Math. Stat., 35, 389-397.